Modeling Ammonia Absorption of CO\textsubscript{2}

Alex Bonsu

OLI Simulation Conference
Whippany, NJ
Nov 16-17, 2010
Modeling CO₂ Absorption with Ammonia

- Basis for Process and Model
- Types of OLI Models Used
- Results
- Conclusions
Basis for Process and Model

• Process Basis
 ▪ Stable solvent
 ▪ Non-foaming solvent
 ▪ High loading capacity solvent
 ▪ High solvent regeneration pressure
 ▪ Low CO2 compression energy
 ▪ Unique gas-liquid contacting device

• Model Basis
 ▪ Ammonia chemistry complex
 ▪ Products unstable
 ▪ Difficult to prepare standard solutions
Absorption & Regeneration

Routes

Minor route: Ammonium carbonate

\[
2\text{NH}_3 + \text{H}_2\text{O} + \text{CO}_2 \quad \leftrightarrow \quad (\text{NH}_4)_2\text{CO}_3
\]

\[
(\text{NH}_4)_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2 \quad \leftrightarrow \quad 2\text{NH}_4\text{HCO}_3
\]

Major route: Ammonium carbamate

\[
2\text{NH}_3 + \text{CO}_2 \quad \leftrightarrow \quad (\text{NH}_3)_2\text{CO}_2
\]

\[
(\text{NH}_3)_2\text{CO}_2 + 2\text{H}_2\text{O} + \text{CO}_2 \quad \leftrightarrow \quad 2\text{NH}_4\text{HCO}_3
\]
Models Used

• Bench Scale Stirred Tank Reactor
 • DynaChem: Gas and liquid phase composition

• Analyzers Calibration – Chemical species
 • Stream Analyzer
 • DynaChem

• Equilibrium Model – Pressure versus Temperature
 • Stream Analyzer

• Steady State Commercial Process Modeling
 • ESP
 • OLIPRO
Stirred Tank Reactor

- Split-ring assembly
- Heating jacket
- Guide rail for heater
- Fixed head
- Reactor vessel
- Pneumatic lift
Stirred Tank Reactor
Stirred Tank Reactor Dynamic Model

Unit 1
Raw Gas

Absorber
Unit 2

Treated Gas

V3

CL3

TC

Cooler

Unit 3

Rich Solvent

V4

V7

Regenerator
Unit 4

Unit 6

Unit 5

Heater

Condensate

CO2

1

2

3

4

5

6

7

8

9

10

11

12

13

Solvent

Gas

Thermal Energy

Electrical Signal
Measured versus Predicted CO$_2$ Capture Efficiencies and R values

![Graph showing measured versus predicted CO$_2$ capture efficiencies and R values.](image)

- **Axes:**
 - X-axis: Time, mins

- **Lines:**
 - Model Eff.
 - Exp Eff
 - Model R
 - Exp R
 - NH4HCO3PPT

- **Annotations:**
 - R and ABC Crystals, wt%

SOUTHERN COMPANY

This graph illustrates the comparison between measured and predicted CO$_2$ capture efficiencies and R values over time, with markers for different substances and conditions.
Measured versus Predicted Ammonia Slip
Liquor Composition Predicted by OLI Model

Molar Ratio, R, (NH$_3$/CO$_2$)

Chemical Species, g mols
- Aqueous ammonia
- Bicarbonate ions
- Ammonium ions
- Carbamate ions
- ABC crystals

Confidential and Proprietary
Nuclear Magnetic Resonance Analysis

- **Left-hand peak allows direct determination of ammonium carbamate.**
- **Right-hand peak determines combination of ammonium carbonate and bicarbonate.**
- **Greater the horizontal separation of peaks the greater the bicarbonate content.**

Frequency shift
Measured vs. Predicted Ammonium Carbamate

\[y = 0.988x \]

\[R^2 = 0.9947 \]
Measured vs. Predicted Ammonium Carbonate

\[y = 1.7339x \]

\[R^2 = 0.9911 \]
Measured versus Predicted Ammonium Bicarbonate

\[y = 0.9622x \]

\[R^2 = 0.9906 \]
Comparing NMR Data and OLI Model

Comparison of NMR Data and OLI Model

- OLI Model Prediction, Wt% vs. NMR Measurement, Wt %
- Different compounds (Bicarbonate, Carbonate, Carbamate) indicated by different markers
- Perfect Agreement line drawn for reference
Raman Spectra Basics

- Raman spectroscopy uses vibrational and rotational energy to identify and quantify molecules.
- Peak wave numbers identify the compound.
- Intensity of the energy or the peak heights determine the concentration of the compound.
Raman Spectral Correlation to Carbamate

Correlation (R^2) = 0.9777

5 Factors
Raman Spectral Correlation to Bicarbonate

Correlation (R^2) = 0.985
5 Factors
Equilibrium Pressure vs. Temperature
ESP Model for CO2 Capture with Ammonia

- **LS** = Lean Solvent
- **RS** = Rich Solvent
- **SV** = Syngas Vapor
- **SC** = Syngas Cool

NH3 Valve
- NH3
- A-NH3
- NH3 CNTL

MIX 104
- MIX 102
- RS1
- RS2
- E-102

RSH
- RS3
- RS4

V-100
- Rich Solvent 6

Lean Cooler
- LRH

LRH
- Lean Rich Heat Exchanger

Lean Solvent
- Lean Solvent

RCGH
- Raw Syngas
- Clean Syngas H

Raw SC
- Clean Syngas M

E-6
- Condensate 1

Regen
- Final Acid Gas

FSPLIT
- FSPLIT = Flow Splitter

V-102
- Clean Syngas 3

Clean Syngas 2

Clean Syngas 1

Clean Syngas

C+4 CNTL

A-NH3

A-H2O

H2O Valve

Lean Rich Heat Exchanger (LRH)

H2O CNTL

Lean Solvent (LS)

Rich Solvent (RS)

Syngas Vapor (SV)

Syngas Cool (SC)

Raw & Clean Gas Heat Exchanger (RCGH)

Clean Syngas Mix (CSM)

Clean Syngas (CS)

Raw Syngas (RS)

Rich Solvent Heat Exchanger (RSH)
Conclusion

• Using a bench scale stirred tank reactor we successfully validated the OLI Mixed Solvent Electrolyte (MSE) data and established that the reaction between CO_2 and ammonia is equilibrium controlled.

• MSE and ESP will be used to model and establish the economic viability of the steady state commercial process for CO_2 capture with ammonia.